The metabolic cost of force generation.
نویسندگان
چکیده
INTRODUCTION The purpose of this study was to provide support, based on a review of existing data, for a general relationship between metabolic cost and force generated. There are confounding factors that can affect metabolic cost, including muscle contraction type (isometric, eccentric, or concentric), length, and speed as well as fiber type (e.g., fast or slow) and moment arm distances. Despite these factors, empirical relationships for metabolic cost have been found that transcend species and movements. METHODS We revisited the various equations that have been proposed to relate metabolic rate with mass, velocity, and step contact time during running and found that metabolic rate was proportional to the external force generated and the number of steps per unit time. This relationship was in agreement with a previously proposed hypothesis that the metabolic cost to generate a single application of a unit external force is a constant. RESULTS Data from the literature were collected for a number of different activities and species to support the hypothesis. Running quadrupedal and bipedal species, as well as human cycling, cross-country skiing, running (forward, backward, on an incline, and against a horizontal force), and arm activities (running, cycling, and ski poling), all had a constant metabolic cost per unit external force per application. CONCLUSION The proportionality constant varied with activity, possibly reflecting differences in the aspects of muscular contraction, fiber types, or mechanical advantage in each activity. It is speculated that a more general relation could be obtained if biomechanical analyses to account for other factors, such as contraction length, were included.
منابع مشابه
Energetics of bipedal running. I. Metabolic cost of generating force.
Similarly sized bipeds and quadrupeds use nearly the same amount of metabolic energy to run, despite dramatic differences in morphology and running mechanics. It has been shown that the rate of metabolic energy use in quadrupedal runners and bipedal hoppers can be predicted from just body weight and the time available to generate force as indicated by the duration of foot-ground contact. We tes...
متن کاملMetabolic costs of isometric force generation and maintenance of human skeletal muscle.
During isometric contractions, no true work is performed, so the force-time integral (FTI) is often used to approximate isometric work. However, the relationship between FTI and metabolic cost is not as linear. We tested the hypothesis that this nonlinearity was due to the cost of attaining a given force being greater than that of maintaining it. The ATP consumed per contraction in the human me...
متن کاملBiomechanical Determinants of Muscle Metabolic Energy Consumption in Locomotion
Individuals tend to walk at a speed that minimizes the metabolic energy consumption per unit distance. Within a speed, individuals self-select a stride frequency (SF) that minimizes the energy cost for that particular speed [1]. It remains unclear exactly why metabolic energy is minimized at the preferred SF. A better understanding of the factors that determine the cost of locomotion would shed...
متن کاملInvestigation of methods for constructing gloves with tactile and force feedback for virtual reality and telecontrol of anthropomorphic manipulators
Aims. Devices that allow using the functionality of natural hand movements are of the greatest interest. The purpose of this study is to select areas of research at the intersection of several fields of science – biomechanics and cybernetics to develop scientific and technical approaches to track the movements of the operator's fingers and form feedback tactile and force communication received ...
متن کاملStretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running
Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2-5 m/s with tendon force-strain cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medicine and science in sports and exercise
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2003